## Day 11

## Trajectory Generation

## Inverse Kinematics Recap

।. Solve for the first 3 joint variables $q_{1}, q_{2}, q_{3}$ such that the wrist center $o_{c}$ has coordinates

$$
o_{c}^{0}=o-d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

2. Using the results from Step I, compute $R_{3}^{0}$
3. Solve for the wrist joint variables $q_{4}, q_{5}, q_{6}$ corresponding to the rotation matrix

$$
R_{6}^{3}=\left(R_{3}^{0}\right)^{T} R
$$

## Path Generation

- a path is defined as a sequence of configurations a robot makes to go from one place to another
- a trajectory is a path where the velocity and acceleration along the path also matter


## Joint-Space Path

- a joint-space path is computed considering the joint variables



## Joint-Space Path Joint Angles



## Cartesian-Space Path

- a Cartesian-space path considers the position of end-effector



## Cartesian-Space Path Joint Variable 1



## Cartesian-Space Path Joint Variable 2



